2)第202章 寻找志愿者_学霸从数学建模开始
字体:      护眼 关灯
上一章 目录 下一章
  设置了富有特色的科创融合课程,展开对小卫星探测器的研发。目前,南大天格团队已经成功完成了首颗南大-川大合作天格立方星——天宁星——载荷的地面试验,预期于2022年3月发射。同时,南京大学天格小卫星团队经过1年半的研发、设计、实验论证,于2021年10月最终确定了自主设计的第二颗立方星——应天星——的载荷设计方案。该方案使用可编程逻辑门(FPGA)芯片替代原有的单片机(MCU)芯片,充分利用可编程逻辑的并行性、高性能和灵活性等特点。这个方案在本领域内具有前沿创新性和独特性,充分体现了了以学生为主体的小型项目的灵活性和创新性。

  天格计划的主要科学观测目标是伽马射线暴。宇宙伽马射线暴是人类已知最剧烈的天体物理过程之一,是天体物理领域的研究前沿。2020年11月清华大学天格计划团队研制发射的天格02星载荷成功开展持续科学观测,已获得首批几十例伽马暴事例的候选体。2021年1月21日,天格02星观测到GRB210121A伽马暴事例(图1),该事例也被我国怀柔一号(GECAM,极目)卫星、慧眼(HXMT)卫星和美国费米(Fermi/GBM)卫星所确认。有趣的是,GRB210121A在近万个伽马暴样本中的统计分布中处于很特殊的地位。其持续时间大约为13秒,具有明显的长暴特征(长于2s的伽马暴被定义为长暴)。通过使用截断幂率谱(cutoffpower-law)模型对观测数据进行拟合,研究团队发现GRB210121A的谱指数偏硬,高于同步辐射限制的低能谱指数上限,此外其峰值能量(Ep)很硬,在第一个脉冲的时候由硬到软,但是即使在最后的爆发阶段也始终居高不下。高能量伽马射线光子总是比低能量光子更早到达,这一现象被称为谱延迟(Spectrallag),在GRB210121A中同样观测到这一现象,并且在相对于ΔE的图像中显现出一个拐点,这一现象有可能用于对洛伦兹破缺效应的限制。

  本章未完,请点击下一页继续阅读,后面更精彩!研究团队进一步通过该伽马暴的谱指数初步判断其属于光球模型,利用多色黑体的模型进行拟合得到了很好的效果。理论上伽马暴的峰值能量应小于等于黑体所释放的最大能量,通过这一限制可以求出光球模型的半径范围,利用物理的光球模型对GRB210121A进行拟合,得到其半径为几百千米,正好处在光球模型的半径限制内,同时这一模型也限制了该伽马暴的红移位于到的范围内。通过Ep-Eiso的统计相

  请收藏:https://m.icflo.com

(温馨提示:请关闭畅读或阅读模式,否则内容无法正常显示)

上一章 目录 下一章